
ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca

dwharder@gmail.com

Evaluating a polynomial at a point
and Horner’s rule

Introduction

• In this topic, we will

– Describe the representation of polynomials

– Discuss the idea of evaluating polynomials

– Look at a sequence of more efficient implementations

• We will use C++

– Describe the evaluation of polynomials in MATLAB

Evaluating a polynomial at a point and Horner's rule

2

Representing a polynomial

• As with our representation, in C++, we will represent a
polynomial as an array where a[k] is the coefficient of xk

– For example:
double a[3]{ 2.0, 3.0, 1.0 }; // x^2 + 3x + 2

Evaluating a polynomial at a point and Horner's rule

3

1 2

1 2 1 0

n n

n na x a x a x a x a

    

Representing a polynomial

• In MATLAB, a polynomial is represented with a vector:

– An n-dimensional vector is polynomial of degree n – 1

– If p is an n-dimensional vector, p(k) is the coefficient of xn – k

• Consequently, the following represents x2 + 3x + 2

>> p = [1 3 2];

• If a vector is passed to a function expecting a polynomial,
the vector is interpreted as described above:

>> roots(p)

ans =

-2

-1

Evaluating a polynomial at a point and Horner's rule

4

This Matlab code is provided for
demonstration purposes and is not
required for the examination.

Representing a polynomial

• Some other useful polynomial functions in Matlab:

>> polyder([1 3 2]) % take the derivative

ans =

2 3

>> polyint([1 3 2]) % find the antiderivative

ans =

0.3333 1.5000 2.0000 0

Evaluating a polynomial at a point and Horner's rule

5

This Matlab code is provided for
demonstration purposes and is not
required for the examination.

Evaluating a polynomial

• Suppose you have the polynomial

1.2 x4 – 3.8 x3 + 4.9 x2 – 0.7 x + 5.6

– How would you evaluate this at x = 2.5?

– Author a function pow(double x, unsigned int n) and call it

Evaluating a polynomial at a point and Horner's rule

6

Evaluating a polynomial

• The most expensive way of calculating xn:
template <typename T>

T pow_O_n(T x, int n) {

if (n >= 0) {

T result{ 1.0 };

for (int k{1}; k <= n; ++k) {

result *= x;

}

return result;

} else if (n == INT_MIN) {

return pow_O_n(1.0/x, -(n + 1))/x;

} else {

return pow_O_n(1.0/x, -n);

}

}

Evaluating a polynomial at a point and Horner's rule

7

1
n

nx
x



 
  
 

 time

n

n

x x x x x  

 O n

This C++ code is meant to demonstrate sub-optimal
algorithms not required on the examination

Evaluating a polynomial

• The most expensive form:
template <typename T>

T polyval_O_n2(T coeffs[], unsigned int degree, T x) {

T result{ coeffs[0] };

for (unsigned int k{1}; k <= degree; ++k) {

result += coeffs[k]*pow_O_n(x, k);

}

return result;

}

Evaluating a polynomial at a point and Horner's rule

8

 2O n

This C++ code is meant to demonstrate sub-optimal
algorithms not required on the examination

Evaluating a polynomial

• A recursive means of calculating xn:
template <typename T>

T pow_O_ln_n_rec(T x, int n) {

if (n > 0) {

T result{ pow_O_ln_n_rec(x, n/2) };

result *= result;

return ((n&1) == 0) ? result : result*x;

} else if (n == 0) {

return 1.0;

} else if (n == INT_MIN) {

return pow_O_ln_n_rec(1.0/x, -(n + 1))/x;

} else {

return pow_O_ln_n_rec(1.0/x, -n);

}

}

Evaluating a polynomial at a point and Horner's rule

9

 

 

2

2

2
1

2

 1 0

 is even

 is odd

nn

n

n

x n
x

x n
x











  O ln n

This C++ code is meant to demonstrate sub-optimal
algorithms not required on the examination

Evaluating a polynomial

• A more efficient approach:
template <typename T>

T polyval_O_n_ln_n_rec(T coeffs[], unsigned int degree, T x) {

T result{ coeffs[0] };

for (unsigned int k{1}; k <= degree; ++k) {

result += coeffs[k]*pow_O_ln_n_rec(x, k);

}

return result;

}

Evaluating a polynomial at a point and Horner's rule

10

  O lnn n

This C++ code is meant to demonstrate sub-optimal
algorithms not required on the examination

Evaluating a polynomial
• An iterative means of calculating xn:

template <typename T>

T pow_O_ln_n_iter(T x, int n) {

if (n >= 0) {

T result{ 1.0 };

for (; n > 0; n <<= 1, x *= x) {

if ((n&1) == 1) {

result *= x;

}

}

return result;

} else if (n == INT_MIN) {

return pow_O_ln_n_iter(1.0/x, -(n + 1))/x;

} else {

return pow_O_ln_n_iter(1.0/x, -n);

}

}

Evaluating a polynomial at a point and Horner's rule

11

  O ln n

21 16 4 1 16 4 1x x x x x  

This C++ code is meant to demonstrate sub-optimal
algorithms not required on the examination

Evaluating a polynomial

• An even more efficient approach:
template <typename T>

T polyval_O_n(T coeffs[], unsigned int degree, T x) {

T result{ coeffs[0] };

T term{ 1.0 };

for (unsigned int k{1}; k <= degree; ++k) {

term *= x;

result += coeffs[k]*term;

}

return result;

}

– A total of approximately 3n FLOPs

Evaluating a polynomial at a point and Horner's rule

12

 O n

This C++ code is meant to demonstrate sub-optimal
algorithms not required on the examination

Evaluating a polynomial

• All these evaluate the polynomial in the standard form

1.2 x4 – 3.8 x3 + 4.9 x2 – 0.7 x + 5.6

– What about rewriting it?

(1.2 x – 3.8) x3 + 4.9 x2 – 0.7 x + 5.6

((1.2 x – 3.8) x + 4.9) x2 – 0.7 x + 5.6

(((1.2 x – 3.8) x + 4.9) x – 0.7) x + 5.6

• This has only 2n FLOPs

• This is known as Horner’s rule for evaluating polynomials

Evaluating a polynomial at a point and Horner's rule

13

Evaluating a polynomial

• This has approximately half the run time of the previous version:
template <typename T>

T polyval_horner(T coeffs[], unsigned int degree, T x) {

T result{ coeffs[degree] };

for (unsigned int k{degree - 1}; k <= degree; --k) {

result = result*x + coeffs[k];

}

return result;

}

Evaluating a polynomial at a point and Horner's rule

14

 O n

Evaluating a polynomial

• This implementation is approximately 1% faster:
template <typename T>

T polyval_horner_ptr(T coeffs[], unsigned int degree, T x) {

T *coeff{ coeffs + degree };

T result{ *coeff };

while (coeff > coeffs) {

result = x*result + *--coeff;

}

return result;

}

– If you require such efficiency, use assembly language…

Evaluating a polynomial at a point and Horner's rule

15
This demonstrates effective use of pointer arithmetic,
but is not required for the examination

Horner’s rule

• In MATLAB, evaluating a polynomial is straight-forward:

>> p = [1 3 2];

>> polyval(p, 0.3); % calculate p(0.3)

ans =

2.9900

>> polyval([1 3 2], [0.3 0.2; 0.5 -0.1])

ans =

2.9900 2.6400

3.7500 1.7100

Evaluating a polynomial at a point and Horner's rule

16

Summary

• Following this topic, you now

– Understand the representation of polynomials that:

• We will use for C++

• Is used in MATLAB

– Have seen successively more efficient evaluations of polynomials

– Are aware that this ends with the very efficient Horner’s rule

– Know that in MATLAB,

calling polyval will evaluate the polynomial using Horner’s rule

Evaluating a polynomial at a point and Horner's rule

17

References

[1] https://en.wikipedia.org/wiki/Horner%27s_method

[2] https://www.mathworks.com/help/matlab/polynomials.html

Evaluating a polynomial at a point and Horner's rule

18

Acknowledgments

None so far.

Evaluating a polynomial at a point and Horner's rule

19

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

Evaluating a polynomial at a point and Horner's rule

20

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Evaluating a polynomial at a point and Horner's rule

21

