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Introduction

• In this topic, we will

– Describe the representation of polynomials

– Discuss the idea of evaluating polynomials

– Look at a sequence of more efficient implementations

• We will use C++

– Describe the evaluation of polynomials in MATLAB
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Representing a polynomial

• As with our representation, in C++, we will represent a 
polynomial as an array where a[k] is the coefficient of xk

– For example:
double a[3]{ 2.0, 3.0, 1.0 }; // x^2 + 3x + 2
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Representing a polynomial

• In MATLAB, a polynomial is represented with a vector:

– An n-dimensional vector is polynomial of degree n – 1

– If p is an n-dimensional vector, p(k) is the coefficient of xn – k

• Consequently, the following represents x2 + 3x + 2

>> p = [1 3 2];

• If a vector is passed to a function expecting a polynomial,
the vector is interpreted as described above:

>> roots( p )

ans =

-2

-1
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Representing a polynomial

• Some other useful polynomial functions in Matlab:

>> polyder( [1 3 2] )   % take the derivative

ans =

2   3

>> polyint( [1 3 2] )   % find the antiderivative

ans =

0.3333   1.5000   2.0000        0
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Evaluating a polynomial

• Suppose you have the polynomial

1.2 x4 – 3.8 x3 + 4.9 x2 – 0.7 x + 5.6

– How would you evaluate this at x = 2.5?

– Author a function pow( double x, unsigned int n ) and call it
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Evaluating a polynomial

• The most expensive way of calculating xn:
template <typename T>

T pow_O_n( T x, int n ) {

if ( n >= 0 ) {

T result{ 1.0 };

for ( int k{1}; k <= n; ++k ) {

result *= x;    

}

return result;

} else if ( n == INT_MIN ) {

return pow_O_n( 1.0/x, -(n + 1) )/x;

} else {

return pow_O_n( 1.0/x, -n );

}

}
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Evaluating a polynomial

• The most expensive form:
template <typename T>

T polyval_O_n2( T coeffs[], unsigned int degree, T x ) {

T result{ coeffs[0] };

for ( unsigned int k{1}; k <= degree; ++k ) {

result += coeffs[k]*pow_O_n( x, k );

}

return result;

}
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Evaluating a polynomial

• A recursive means of calculating xn:
template <typename T>

T pow_O_ln_n_rec( T x, int n ) {

if ( n > 0 ) {

T result{ pow_O_ln_n_rec( x, n/2 ) };

result *= result;

return ( (n&1) == 0 ) ? result : result*x;

} else if ( n == 0 ) {

return 1.0;

} else if ( n == INT_MIN ) {

return pow_O_ln_n_rec( 1.0/x, -(n + 1) )/x;

} else {

return pow_O_ln_n_rec( 1.0/x, -n );

}

}
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Evaluating a polynomial

• A more efficient approach:
template <typename T>

T polyval_O_n_ln_n_rec( T coeffs[], unsigned int degree, T x ) {

T result{ coeffs[0] };

for ( unsigned int k{1}; k <= degree; ++k ) {

result += coeffs[k]*pow_O_ln_n_rec( x, k );

}

return result;

}
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Evaluating a polynomial
• An iterative means of calculating xn:

template <typename T>

T pow_O_ln_n_iter( T x, int n ) {

if ( n >= 0 ) {

T result{ 1.0 };

for ( ; n > 0; n <<= 1, x *= x ) {

if ( (n&1) == 1 ) {

result *= x;

}

}

return result;

} else if ( n == INT_MIN ) {

return pow_O_ln_n_iter( 1.0/x, -(n + 1) )/x;

} else {

return pow_O_ln_n_iter( 1.0/x, -n );

}

}
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Evaluating a polynomial

• An even more efficient approach:
template <typename T>

T polyval_O_n( T coeffs[], unsigned int degree, T x ) {

T result{ coeffs[0] };

T term{ 1.0 };

for ( unsigned int k{1}; k <= degree; ++k ) {

term *= x;

result += coeffs[k]*term;

}

return result;

}

– A total of approximately 3n FLOPs
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Evaluating a polynomial

• All these evaluate the polynomial in the standard form

1.2 x4 – 3.8 x3 + 4.9 x2 – 0.7 x + 5.6

– What about rewriting it?

(1.2 x – 3.8) x3 + 4.9 x2 – 0.7 x + 5.6

((1.2 x – 3.8) x + 4.9) x2 – 0.7 x + 5.6

(((1.2 x – 3.8) x + 4.9) x – 0.7) x + 5.6

• This has only 2n FLOPs

• This is known as Horner’s rule for evaluating polynomials
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Evaluating a polynomial

• This has approximately half the run time of the previous version:
template <typename T>

T polyval_horner( T coeffs[], unsigned int degree, T x ) {

T result{ coeffs[degree] };

for ( unsigned int k{degree - 1}; k <= degree; --k ) {

result = result*x + coeffs[k];

}

return result;

}
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Evaluating a polynomial

• This implementation is approximately 1% faster:
template <typename T>

T polyval_horner_ptr( T coeffs[], unsigned int degree, T x ) {

T *coeff{ coeffs + degree };

T result{ *coeff };

while ( coeff > coeffs ) {

result = x*result + *--coeff;  

}

return result;

}

– If you require such efficiency, use assembly language…
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Horner’s rule

• In MATLAB, evaluating a polynomial is straight-forward:

>> p = [1 3 2];

>> polyval( p, 0.3 );   % calculate p(0.3)

ans =

2.9900

>> polyval( [1 3 2], [0.3 0.2; 0.5 -0.1] )

ans =

2.9900   2.6400

3.7500   1.7100
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Summary

• Following this topic, you now

– Understand the representation of polynomials that:

• We will use for C++

• Is used in MATLAB

– Have seen successively more efficient evaluations of polynomials

– Are aware that this ends with the very efficient Horner’s rule

– Know that in MATLAB, 

calling polyval will evaluate the polynomial using Horner’s rule
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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